Dieses Bild zeigt Franziska Albrecht

Franziska Albrecht

Frau Dr.

Principal Investigator, Biofabrikation
Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie

Kontakt

Pfaffenwaldring 31
70569 Stuttgart
Deutschland
Raum: 4.441

  1. Albrecht, F., Wollschlaeger, J., & Kluger, P. (2025). Kultiviertes Fleisch – von Rinderzellen zu biofabriziertem Fett. BIOspektrum. https://doi.org/10.1007/s12268-025-2422-z
  2. Albrecht, F. B., Schick, A.-K., Klatt, A., Schmidt, F. F., Nellinger, S., & Kluger, P. J. (2025). Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum‐Based Hydrogels, and Explants. Macromolecular Bioscience. https://doi.org/10.1002/mabi.202400320
  3. A, K., Wollschlaeger, J. O., FB, A., S, R., LB, H., Hrenn, H., Melzer, T., Heine, S., & Kluger, P. J. (2024). Dynamically cultured, differentiated bovine adipose-derived stem cell spheroids as building blocks for biofabricating cultured fat. Nature Communications. https://doi.org/10.1038/s41467-024-53486-w
  4. Albrecht, F. B., Schmidt, F. F., Schmidt, C., Börret, R., & Kluger, P. J. (2024). Robot‐based 6D bioprinting for soft tissue biomedical applications. Engineering in Life Sciences. https://doi.org/10.1002/elsc.202300226
  5. FB, A., FF, S., C, S., R, B., & Kluger, P. J. (2024). Robot-based 6D bioprinting for soft tissue biomedical applications. Engineering in Life Sciences. https://doi.org/10.1002/elsc.202300226
  6. FB, A., Ahlfeld, T., A, K., Heine, S., Gelinsky, M., & Kluger, P. J. (2024). Biofabrication’s Contribution to the Evolution of Cultured Meat. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202304058
  7. Heine, S., Ahlfeld, T., Albrecht, F. B., Gelinsky, M., & Kluger, P. J. (2024). How biofabrication can accelerate cultured meat’s path to market. Nature Reviews Materials. https://doi.org/10.1038/s41578-024-00650-9
  8. FB, A., FF, S., AC, V., & Kluger, P. J. (2022). Bioprinting of 3D Adipose Tissue Models Using a GelMA-Bioink with Human Mature Adipocytes or Human Adipose-Derived Stem Cells. Gels (Basel, Switzerland). https://doi.org/10.3390/gels8100611
  9. Albrecht, F. B., Schmidt, F. F., Volz, A.-C., & Kluger, P. J. (2022). Bioprinting of 3D Adipose Tissue Models Using a GelMA-Bioink with Human Mature Adipocytes or Human Adipose-Derived Stem Cells. Gels. https://doi.org/10.3390/gels8100611
  10. Albrecht, F. B., Dolderer, V., Nellinger, S., Schmidt, F. F., & Kluger, P. J. (2022). Gellan Gum Is a Suitable Biomaterial for Manual and Bioprinted Setup of Long-Term Stable, Functional 3D-Adipose Tissue Models. Gels. https://doi.org/10.3390/gels8070420
  11. FB, A., V, D., S, N., FF, S., & Kluger, P. J. (2022). Gellan Gum Is a Suitable Biomaterial for Manual and Bioprinted Setup of Long-Term Stable, Functional 3D-Adipose Tissue Models. Gels (Basel, Switzerland). https://doi.org/10.3390/gels8070420
  12. Wollschlaeger, J. O., R, M., FB, A., A, K., Heine, S., A, B., & Kluger, P. J. (2022). Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels (Basel, Switzerland). https://doi.org/10.3390/gels8020094
  13. Wollschlaeger, J. O., Maatz, R., Albrecht, F. B., Klatt, A., Heine, S., Blaeser, A., & Kluger, P. J. (2022). Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels. https://doi.org/10.3390/gels8020094
Zum Seitenanfang