Mikrowellentechnologie

Neuartige Mikrowellenkomponenten und komplette Übertragungssysteme für verschiedene Fusionsexperimente

Forschungsschwerpunkte

In heutigen Fusionsexperimenten wird Elektron-Zyklotron-Resonanzheizung mit Mikrowellen im Bereich von 28 GHz bis 170 GHz bei Megawatt-Leistungen regulär zur Plasmaheizung und zur Unterdrückung von magnetohydrodynamischen Instabilitäten verwendet. Wir liefern Beiträge zur Entwicklung von Heizungs- und Diagnostikkomponenten, zu ihrer Anwendung und zur Auswertung experimenteller Ergebnisse.

Für die Übertragung von Hochleistungsmillimeterwellen werden überdimensionierte Hohlleiter und quasioptische Übertragungsleitungen verwendet. Das Institut entwickelt, simuliert und testet neuartige Mikrowellenkomponenten und komplette Übertragungssysteme für verschiedene Fusionsexperimente wie z.B. Wendelstein 7-X, ASDEX Upgrade und ITER. Die Hochleistungsmikrowellen werden von Gyrotrons erzeugt. Ferner werden Hochspannungsversorgungen entwickelt und gefertigt, die die strengen Anforderungen der Gyrotrons erfüllen.

Wir sind auch an den auf ECRH-basierenden Experimenten beteiligt. An Asdex Upgrade wird der ECRH-Heizprozess und der Einfluss des ECRH-Stromtriebes auf neoklassische Tearingmoden untersucht. Als Unterstützung für verschiedene Fusionsexperimente werden full-wave Simulationen zum Studium von Wellenausbreitung und Modenkonversion im Plasma durchgeführt.

Mikrowellen werden ebenso zur Heizung und Diagnose von Hochtemperatur-Fusionsplasmen verwendet und das Institut liefert Beiträge zur Doppler-Reflektometrie von Plasmaturbulenzen und und Flussuntersuchungen durch die Entwicklung von Komponenten und die Simulation experimenteller Daten.

Publikationen

  1. 2023

    1. B. Plaum, „Monte Carlo evaluation of the effects of higher order modes in high-power millimeter-wave systems“, Proceedings of the 48th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), Sep. 2023.
    2. B. Plaum, „Estimation of the Effects of Spurious Modes in Linear Microwave Systems Using a Monte Carlo Algorithm“, IEEE Journal of Microwaves, Bd. 3, Nr. 3, Art. Nr. 3, Juli 2023, doi: 10.1109/JMW.2023.3283152.
    3. A. Frank u. a., „Impact of the turbulence wavenumber spectrum and probing beam geometry on Doppler reflectometry perpendicular velocity measurements“, Plasma Physics and Controlled Fusion, Bd. 65, Nr. 6, Art. Nr. 6, Mai 2023, doi: 10.1088/1361-6587/accd1a.
    4. B. Plaum, M. Preynas, und M. Choe, „Calculations for the optical system for the first ITER plasma“, EPJ Web of Conferences, Bd. 277, S. 01005, 2023, doi: 10.1051/epjconf/202327701005.
    5. D. Wagner u. a., „Single- and Two-Frequency Sub-THz Waveguide Notch Filters With Rejection Frequencies Within and Beyond the Passband“, IEEE Transactions on Microwave Theory and Techniques, Bd. 71, Nr. 6, Art. Nr. 6, 2023, doi: 10.1109/TMTT.2023.3234103.
    6. C. Lechte, T. Happel, K. Höfler, T. Görler, A. Frank, und the ASDEX Upgrade Team, „Synthetic Fullwave Doppler Reflectometry Diagnostic for Fusion Experiments“, 2023.
    7. A. Hentrich, „Simulation and reflectivity measurements of the ITER first plasma beam dump material“, EPJ Web of Conferences, Bd. 277, S. 02009, 2023, doi: 10.1051/epjconf/202327702009.
  2. 2022

    1. A. Hentrich, V. M. Garcia, A. Killinger, B. Plaum, C. Lechte, und G. E. M. Tovar, „Resonant Atmospheric Plasma-Sprayed Ceramic Layers Effectively absorb Microwaves at 170 GHz“, Journal of Infrared, Millimeter, and Terahertz Waves, Bd. 43, Nr. 5–6, Art. Nr. 5–6, Juni 2022, doi: 10.1007/S10762-022-00861-7.
    2. D. Wagner u. a., „Single- and Two-Frequency Sub-THz Notch Filters with Rejection Frequencies Within and Beyond the Pass Band“, IEEE Transactions on Microwave Theory and Techniques, 2022.
    3. C. Lechte, „Mikrowellen-Simulationen am IGVP -- Für Technologie und Fusionsforschung“. Zenodo, 2022. doi: 10.5281/zenodo.6774241.
    4. C. Lechte u. a., „Fullwave Doppler Reflectometry Simulations Coupled with GENE Plasma Turbulence Simulations“, in Proceedings of the 15th International Reflectometry Workshop for fusion plasma diagnostics (IRW15), in Proceedings of the 15th International Reflectometry Workshop for fusion plasma diagnostics (IRW15). 2022.
    5. B. Plaum, „Simulation of microwave beams with PROFUSION“, Universität Stuttgart, 2022. doi: 10.18419/OPUS-12241.
  3. 2021

    1. F. Fanale u. a., „Design validation of in-vessel mirrors and beam dump for first plasma operations in ITER“, Fusion Engineering and Design, Bd. 172, S. 112717, Nov. 2021, doi: 10.1016/j.fusengdes.2021.112717.
    2. J. Lips, S. Heuraux, C. Lechte, und B. Plaum, „On frequency-independent horn antenna design for plasma positioning reflectometers, from simulation to prototype testing“, Journal of Instrumentation, Bd. 16, Nr. 07, Art. Nr. 07, Juli 2021, doi: 10.1088/1748-0221/16/07/P07040.
    3. Y. Corre u. a., „Thermographic reconstruction of heat load on the first wall of Wendelstein 7-X due to ECRH shine-through power“, Bd. 61, Nr. 6, Art. Nr. 6, Apr. 2021, doi: 10.1088/1741-4326/abebea.
    4. C. Lechte, B. Plaum, und others, „Contributions to the New ECRH system for MAST-U“, Online, 2021.
  4. 2020

    1. D. Moseev u. a., „Collective Thomson Scattering Diagnostic for Wendelstein 7-X at 175 GHz“, Journal of Instrumentation, Bd. 15, Nr. 05, Art. Nr. 05, Mai 2020, doi: 10.1088/1748-0221/15/05/c05035.
    2. C. Lechte u. a., „Advanced ECRH components for ITER: Fast switches and reflector gratings“, Online, 2020.
    3. O. L. Krutkin u. a., „Investigation of nonlinear effects in Doppler reflectometry using full-wave synthetic diagnostics“, Plasma Science and Technology, Bd. 22, Nr. 6, Art. Nr. 6, 2020, doi: 10.1088/2058-6272/ab5c28.
    4. V. V. Bulanin u. a., „Full-Wave Modeling of Doppler Backscattering from Filaments“, Plasma Physics Reports, Bd. 46, S. 490–495, 2020, doi: 10.1134/S1063780X20050025.
    5. C. Lechte, G. D. Conway, T. Görler, T. Happel, und the ASDEX Upgrade Team, „Fullwave Doppler Reflectometry Simulations for Density Turbulence Spectra in ASDEX Upgrade Using GENE and IPF-FD3D“, Plasma Sci. Technol., Nr. 22, Art. Nr. 22, 2020, doi: 10.1088/2058-6272/ab7ce8.
  5. 2019

    1. D. Moseev u. a., „Collective Thomson scattering diagnostic at Wendelstein 7-X“, Rev. Sci. Instrum., Bd. 90, S. 013503, 2019, doi: 10.1063/1.5050193.
    2. O. Krutkin u. a., „Validation of full-f global gyrokinetic modeling results against the FT-2 tokamak Doppler reflectometry data using synthetic diagnostics“, Nucl. Fusion, Bd. 59, Nr. 096017, Art. Nr. 096017, 2019, doi: 10.1088/1741-4326/ab1cfb.
    3. C. Lechte, G. D. Conway, T. Görler, T. Happel, und the ASDEX Upgrade Team, „Fullwave Doppler Reflectometry Simulations for Turbulence Spectra Using GENE and IPF-FD3D“, in Proceedings of the 14th International Reflectometry Workshop (IRW14), in Proceedings of the 14th International Reflectometry Workshop (IRW14). 2019.
    4. C. Lechte, W. Kasparek, B. Plaum, M. Schubert, und J. Stober, „3D Simulation Of The Performance Of Reflector Gratings For High Power MM Waves“, Lenggries, Germany, 2019.
    5. G. D. Conway, C. Lechte, E. Poli, O. Maj, und the ASDEX Upgrade Team, „Recent progress in modelling the resolution and localization of Doppler reflectometry measurements“, in Proceedings of the 14th International Reflectometry Workshop (IRW14), in Proceedings of the 14th International Reflectometry Workshop (IRW14). 2019. [Online]. Verfügbar unter: https://www.aug.ipp.mpg.de/IRW/IRW14/papers/213-IRW14-Conway-paper.pdf
  6. 2018

    1. R. C. Wolf u. a., „Electron-cyclotron-resonance heating in Wendelstein 7-X: A versatile heating and current-drive method and a tool for in-depth physics studies“, Plasma Physics and Controlled Fusion, Bd. 61, Nr. 1, Art. Nr. 1, Nov. 2018, doi: 10.1088/1361-6587/aaeab2.
    2. T. Windisch u. a., „Phased array Doppler reflectometry at Wendelstein 7-X“, Review of Scientific Instruments, Bd. 89, Nr. 10, Art. Nr. 10, Okt. 2018, doi: 10.1063/1.5039287.
    3. C. Lechte, G. D. Conway, T. Görler, T. Happel, C. Tröster-Schmid, und the ASDEX Upgrade Team, „Using Fullwave Simulations to Understand the Turbulent Wavenumber Spectrum Measured by Doppler Reflectometry“, EPJ Web Conf., 2018.
    4. A. Zach u. a., „In-situ real-time monitoring of spurious modes in HE11 transmission lines using multi-hole couplers in miter bends“, EPJ Web Conf., 2018.
    5. G. V. Zadvitskiy, S. Heuraux, C. Lechte, S. Hacquin, und R. Sabot, „Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas“, Plasma Physics and Controlled Fusion, Bd. 60, Nr. 2, Art. Nr. 2, 2018, [Online]. Verfügbar unter: http://stacks.iop.org/0741-3335/60/i=2/a=025025
    6. B. Plaum, „Optimization of Broadband Smooth-Wall Circular Horn Antennas“, Journal of Infrared Millimeter and Terahertz Waves, Bd. 39, Nr. 10, Art. Nr. 10, 2018, doi: 10.1007/s10762-018-0510-6.
    7. R. C. Wolf u. a., „Electron-cyclotron-resonance heating in Wendelstein 7-X: A versatile heating and current-drive method and a tool for in-depth physics studies“, Plasma Phys. Contr. Fusion, 2018.
    8. A. Altukhov u. a., „Benchmarking of Full-f Global Gyrokinetic Modeling Results Against the FT-2 Tokamak Doppler Reflectometry Data Using Synthetic Diagnostics“, in IEEE Conference Proceedings, in IEEE Conference Proceedings. 2018.
    9. B. Plaum u. a., „Synthesis of reflection gratings for advanced plasma heating scenarios“, EPJ Web Conf., 2018.
    10. C. Lechte, „Doppler Reflectometry Graphical Demonstration Movie Simulated With IPF-FD3D“, 2018, doi: 10.5281/zenodo.3696852.
    11. B. Plaum u. a., „Development of reflection gratings for advanced ECRH scenarios“, EPJ Web Conf., 2018, doi: todo.
    12. O. L. Krutkin, E. Z. Gusakov, S. Heuraux, und C. Lechte, „Nonlinear Doppler reflectometry power response. Analytical predictions and full-wave modelling“, Plasma Phys. Contr. Fusion, 2018.
    13. C. Lechte u. a., „Simulation of Polarising and Reflecting Gratings for High Power mm Waves“, EPJ Web Conf., 2018, doi: https://doi.org/10.1051/epjconf/201920304010.
  7. 2017

    1. O. L. Krutkin u. a., „Synthetic radial correlation Doppler reflectometry diagnostic for FT-2 tokamak“, 2017.
    2. G. V. Zadvitskiy, S. Heuraux, C. Lechte, S. Hacquin, und R. Sabot, „Edge turbulence effects on core radial k-spectrum extracted from reflectometry data“, 2017.
    3. G. D. Conway, C. Lechte, P. Hennequin, P. Simon, und the ASDEX Upgrade Team, „Investigation of turbulence properties via spectral broadening of Doppler reflectometry signals in ASDEX Upgrade“, 2017.
    4. C. Lechte, G. D. Conway, T. Görler, C. Tröster, und the ASDEX Upgrade Team, „Doppler Reflectometry $k$-spectral measurements in ASDEX Upgrade: Experiments and simulations“, Plasma Phys. Contr. Fusion, Bd. 59, Nr. 7, Art. Nr. 7, 2017, doi: 10.1088/1361-6587/aa6fe7.
    5. A. Zach u. a., „New Developments for EC Heating diagnostics“, EPJ Web of Conferences, Bd. 147, 2017.
    6. C. Lechte, G. D. Conway, T. Görler, C. Tröster, und the ASDEX Upgrade Team, „Using Fullwave Simulations to Understand the Turbulent Wavenumber Spectrum Measured by Doppler Reflectometry“, 2017.
    7. F. Leuterer, D. Wagner, J. Stober, W. Kasparek, C. Lechte, und ASDEX Upgrade Team, „Experimental Study of Ohmic Losses of Polarizer Mirror Systems“, EPJ Web Conf., Bd. 149, S. 03002, 2017, doi: 10.1051/epjconf/201714903002.
    8. T. Happel u. a., „Comparison of detailed experimental wavenumber spectra with gyrokinetic simulation aided by two-dimensional full-wave simulations“, Plasma Phys. Contr. Fusion, Bd. 59, Nr. 5, Art. Nr. 5, 2017, doi: 10.1088/1361-6587/aa645b.
    9. Z. C. Ioannidis u. a., „CW Experiments With the EU 1-MW, 170-GHz Industrial Prototype Gyrotron for ITER at KIT“, IEEE Transactions on Electron Devices, Bd. 64, Nr. 9, Art. Nr. 9, 2017, doi: 10.1109/TED.2017.2730242.
    10. C. Lechte u. a., „Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X“, EPJ Web Conf., Bd. 147, Nr. 04004, Art. Nr. 04004, 2017, doi: 10.1051/epjconf/201714704004.
  8. 2016

    1. C. Lechte u. a., „Water-cooled cw loads for high-power millimetre waves“, Leinsweiler, Germany, September 2016.
    2. G. Zadvitskiy u. a., „On the possibility to use a fast 2D interpretative model for analysis of fusion plasma turbulence from reflectometry data“, 2016.
    3. C. Lechte u. a., „Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X“, 2016.
    4. J.-P. Hogge u. a., „Status and Experimental Results of the European 1 MW, 170 GHz Industrial CW Prototype Gyrotron for ITER“, 2016.
    5. C. Lechte, G. D. Conway, T. Görler, C. Tröster, und the ASDEX Upgrade Team, „Doppler Reflectometry Simulations for ASDEX Upgrade and Comparison with Experiment“, 2016.
    6. G. Zadvitskiy, S. Heuraux, C. Lechte, S. Hacquin, R. Sabot, und F. Clairet, „On the possibility to use a fast 2D interpretative model for analysis of fusion plasma turbulence from reflectometry data“, 2016.
    7. D. Wagner u. a., „Status, Operation, and Extension of the ECRH System at ASDEX Upgrade“, Journal of infrared millimeter and terahertz waves, Bd. 37, Nr. 1, Art. Nr. 1, 2016, doi: 10.1007/s10762-015-0187-z.
    8. V. R. Venkateswaran, C. Lechte, und T. Hirth, „Investigation of the influence of the plasma temperature on Doppler reflectometry“, 2016.
    9. C. Lechte, G. D. Conway, T. Görler, C. Tröster, und the ASDEX Upgrade Team, „Simulation of Doppler Reflectometry in ASDEX Upgrade and Comparison with Experiment“, 2016.
  9. 2015

    1. C. Lechte, G. D. Conway, T. Görler, C. Tröster, und the ASDEX Upgrade Team, „Fullwave Doppler Reflectometry Simulations“, 2015.
    2. C. Lechte and G. D. Conway and T. Görler and C. Tröster and the ASDEX Upgrade Team, „Full-Wave Doppler Reflectometry Simulations for ASDEX Upgrade“, 2015.
    3. C. Lechte, G. D. Conway, T. Görler, C. Tröster, und the ASDEX Upgrade Team, „Doppler Reflectometry Simulations for ASDEX Upgrade“, 2015.
    4. B. Plaum u. a., „Design of a remote steering antenna for ECRH heating in the stellarator Wendelstein 7-X“, in Proceedings of the 28th Symposium On Fusion Technology (SOFT-28), in Proceedings of the 28th Symposium On Fusion Technology (SOFT-28), vol. A. Elsevier, 2015, S. 568–572. doi: 10.1016/j.fusengdes.2015.03.026.
    5. U. Stroth u. a., „Experimental turbulence studies for gyro-kinetic code validation using advanced microwave diagnostics“, Nuclear Fusion, Bd. 55, Nr. 8, Art. Nr. 8, 2015, [Online]. Verfügbar unter: http://stacks.iop.org/0029-5515/55/i=8/a=083027
  10. 2014

    1. C. Lechte, G. D. Conway, T. Görler, C. Tröster, und the ASDEX Upgrade Team, „Doppler Reflectometry Simulations for ASDEX Upgrade“, 2014.
  11. 2013

    1. C. Lechte, „ERC3D, a 3-Dimensional Reflectometry Code for EFDA-ITM“, 2013.
    2. C. Lechte u. a., „Remote-Steering Launchers for the ECRH System on the Stellarator W7-X“, 2013.
    3. J. Geiger u. a., „Aspects of steady-state operation of the Wendelstein 7-X stellarator“, Plasma Physics and Controlled Fusion, Bd. 55, Nr. 1, Art. Nr. 1, 2013, [Online]. Verfügbar unter: http://stacks.iop.org/0741-3335/55/i=1/a=014006
    4. C. Lechte, G. D. Conway, T. Görler, C. Tröster, A. Volk, und the ASDEX Upgrade Team, „Full-Wave Doppler Reflectometry Simulations for ASDEX Upgrade“, in Proceedings of the 11th International Reflectometry Workshop (IRW11), in Proceedings of the 11th International Reflectometry Workshop (IRW11). 2013. [Online]. Verfügbar unter: http://www.lptp\allowbreak.polytechnique.fr/\allowbreakNews/11/\allowbreakWorkshop\allowbreak/papers\allowbreak/Lechte\_IRW11-paper.pdf
  12. 2012

    1. B. Plaum, C. Lechte, und W. Kasparek, „Optimization of optical ECRH components with free space mode mixtures“, Dezember 2012.
    2. C. Lechte, H. Idei, W. Kasparek, B. Plaum, J. Ruiz, und D. Tretiak, „A Five-Port Mitre Bend Coupler System For In-Situ Measurement Of Higher-Order Waveguide Modes“, Dezember 2012.
    3. C. Lechte, G. Conway, und T. Görler, „Untersuchung der Doppler-Reflektometrie mit Fullwave-Simulationen“, März 2012.
    4. J. Jelonnek u. a., „Progress on 140 GHz, 1 MW, CW Series Gyrotrons for W7-X“, in 37th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2012, September 23--28, in 37th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2012, September 23--28. Wollongong, Australia, 2012.
    5. D. Wagner u. a., „The broadband multi-Megawatt ECRH system at ASDEX Upgrade“, in 37th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2012, September 23--28, in 37th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2012, September 23--28. Wollongong, Australia, 2012.
    6. J. Ruiz, W. Kasparek, C. Lechte, B. Plaum, und H. Idei, „Numerical and experimental investigation of a 5-port mitre-bend directional coupler for mode analysis in corrugated waveguides“, Journal of Infrared, Millimeter, and Terahertz Waves, Bd. 33, Nr. 5, Art. Nr. 5, 2012, doi: 10.1007/s10762-012-9883-0.
    7. W. Kasparek u. a., „Status of Resonant Diplexer Development for high-power ECRH Applications“, EPJ Web of Conferences, Bd. 32, S. 04008, 2012, doi: 10.1051/epjconf/20123204008.
    8. B. Plaum, W. Kasparek, C. Lechte, J. Ruiz, D. Tretiak, und H. Idei, „In-situ characterization of spurious modes in HE$_11$ transmission lines with a 5-port coupler“, EPJ Web of Conferences, Bd. 32, S. 04010, 2012, doi: 10.1051/epjconf/20123204010.
    9. V. Erckmann u. a., „Large Scale CW ECRH Systems: Some considerations“, EPJ Web of Conferences, Bd. 32, S. 04006, 2012, doi: 10.1051/epjconf/20123204006.
    10. J. P. Pfannmöller, C. Lechte, O. Grulke, und T. Klinger, „Investigations on loop antenna excited whistler waves in a cylindrical plasma based on laboratory experiments and simulations“, Physics of Plasmas, Bd. 19, Nr. 10, Art. Nr. 10, 2012, doi: 10.1063/1.4763558.
  13. 2011

    1. C. Lechte, G. Conway, und T. Goerler, „Simulation of Doppler Reflectometry for Density Fluctuation Diagnostics“, Dezember 2011.
    2. C. Lechte, „Remote Steering Optimisation for W7-X and Reflectometry Simulations in the Presence of Turbulence“, November 2011.
    3. C. Lechte, G. Conway, und T. Goerler, „Doppler Reflectometry Investigations With The Fullwave Code IPF-FD3D“, November 2011.
    4. C. Lechte und H. Kumrić, „Simulation of a Plasma-Filled Horn Antenna With Improved Radiation Pattern“, Plasma Science, IEEE Transactions on, Bd. 39, Nr. 11, Art. Nr. 11, Juni 2011, doi: 10.1109/TPS.2011.2156431.
    5. C. Lechte und G. Conway, „Doppler Reflectometry Investigations With The Fullwave Code IPF-FD3D“, Mai 2011.
    6. C. Lechte, „Simulation von Doppler-Reflektometrie in turbulenten Plasmen“, März 2011.
    7. V. Erckmann u. a., „Large Scale CW ECRH Systems: Meeting a Challenge. Radio Frequency Power in Plasmas“, in Proc. 19th Topical Conference, in Proc. 19th Topical Conference, vol. 1406. Newport, RI, USA, 2011, S. 165.
    8. D. Wagner u. a., „Recent Upgrades and Extensions of the ASDEX Upgrade ECRH System“, Journal of Infrared, Millimeter and Terahertz Waves, Special Issue: Gyrotrons, Bd. 32, S. 274--282, 2011, doi: 10.1007/s10762-010-9703-3.
    9. G. Gantenbein u. a., „140 GHz, 1 MW CW Gyrotron Development for Fusion Applications -- Progress and Recent Results“, Journal of Infrared, Millimeter and Terahertz Waves, Bd. 32, Nr. 3, Art. Nr. 3, 2011, doi: 10.1007/s10762-010-9749-2.
    10. B. Plaum, E. Holzhauer, und C. Lechte, „Numerical Calculation of Reflection Characteristics of Grooved Surfaces with a 2D FDTD Algorithm“, Journal of Infrared, Millimeter and Terahertz Waves, Bd. 32, Nr. 4, Art. Nr. 4, 2011, doi: 10.1007/s10762-011-9778-5.
  14. 2010

    1. C. Lechte, „Fullwave Simulation of Doppler Reflectometry in The Presence of Turbulence“, Mai 2010.
  15. 2009

    1. G. D. Conway u. a., „Turbulence measurements using Doppler reflectometry on ASDEX Upgrade“, None, 2009.
    2. C. Lechte, „Investigation of the Scattering Efficiency in Doppler Reflectometry by Two-Dimensional Full-Wave Simulations“, IEEE Trans. Plasma Sci., Bd. 37, Nr. 6, Art. Nr. 6, 2009, doi: 10.1109/TPS.2009.2019651.
  16. 2008

    1. C. Lechte, G. Conway, und U. Stroth, „Simulation of Doppler Reflectometry in Turbulent Plasmas“, Juni 2008.
    2. C. Lechte, G. Conway, und U. Stroth, „Winkelabhängigkeit der reflektierten Leistung bei Doppler-Reflektometrie in turbulenten Plasmen“, März 2008.
    3. G. D. Conway u. a., „Turbulence and geodesic acoustic mode behavioural studies in ASDEX Upgrade using Doppler Reflectometry“, ??, 2008.
    4. V. Erckmann u. a., „The 10 MW, cw, ECRH-Plant for W7-X: Status and High Power Performance“, in SMSA2008 Boat Conference, in SMSA2008 Boat Conference. 2008.
  17. 2007

    1. C. Lechte, E. Holzhauer, U. Stroth, und G. Conway, „Full Wave Doppler Reflectometry Simulations in 2D“, in Proceedings of the 8th International Reflectometer Workshop in St. Petersburg, Russia, in Proceedings of the 8th International Reflectometer Workshop in St. Petersburg, Russia. 2007. [Online]. Verfügbar unter: https://www.aug.ipp.mpg.de/IRW/IRW8/papers/0810-IRW08-LechteC\_paper.pdf
  18. 2006

    1. B. Plaum u. a., „High-Power Tests of a Remote-Steering Antenna at 140 GHz“, Fusion Science and Technology, Bd. 50, Nr. 1, Art. Nr. 1, 2006, doi: 10.13182/FST06-A1216.
Dieses Bild zeigt Carsten Lechte

Carsten Lechte

Dr. rer. nat.

Dozent, Leiter Mikrowellentechnologie

Zum Seitenanfang